AS

Mathematics

MFP1 Further Pure 1
Mark scheme

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations	
M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark orft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q2	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \alpha+\alpha+4=-\frac{p}{5} ; \quad \alpha(\alpha+4)=\frac{q}{5} \\ & \alpha+2=-\frac{p}{10} ; \quad(\alpha+2)^{2}=\frac{q}{5}+4 \\ & \frac{p^{2}}{100}=\frac{q}{5}+4 \end{aligned}$	B1; B1		Eliminating α to form an eqn in p and q only, dep on at least B1 scored above. M0 if >1 indep error in process before the line where α has been eliminated
	$p^{2}=100\left(\frac{q}{5}+4\right) \Rightarrow p^{2}=20 q+400$	A1	4	AG Be convinced
Alt 1	$(x=) \frac{-p \pm \sqrt{p^{2}-20 q}}{10}$	(B1)		PI
	Equating one correct root to α and the other correct root to $\alpha+4$	(B1)		PI
	$(\pm) 4=\frac{2 \sqrt{p^{2}-20 q}}{10}$	(M1)		Eliminating α to form an eqn in p and q only, condone 1 sign error in roots of eqn
	$\sqrt{p^{2}-20 q}=(\pm) 20 \Rightarrow p^{2}=20 q+400$	(A1)	(4)	AG Be convinced
Alt 2	$\begin{aligned} & 5(\alpha+4)^{2}+p(\alpha+4)+q=0 \text { and } \\ & 5 \alpha^{2}+p \alpha+q=0 \end{aligned}$	(B1)		Both required if a B1 not scored from main scheme.
	Subtract eqns to get $\alpha=-2-0.1 p$	(B1)		OE linear eqn in α and p only
	$5(-2-0.1 p)^{2}+p(-2-0.1 p)+q=0$	(M1)		Eliminating α to form an eqn in p and q only, condone 1 sign error in $2^{\text {nd }} \mathrm{B}$ mark
	$20-0.05 p^{2}+q=0$ so $p^{2}=20 q+400$	(A1)	(4)	AG Be convinced
(b)(i)	$S\left[=2\left(\alpha^{2}+4 \alpha+8\right)\right]=2\left(\frac{q}{5}+8\right)$	B1		A correct expression for the sum of the new roots in terms of q only
	$P\left[=\alpha^{2}(\alpha+4)^{2}\right]=\left(\frac{q}{5}\right)^{2}$	B1		A correct expression for the product of the new roots in terms of q only
	$x^{2}-2\left(\frac{q}{5}+8\right) x+\left(\frac{q}{5}\right)^{2}=0$	B1F	3	Ft c's S and P to form a quadratic eqn in terms of q with no square roots.
Alt	Subst $y=x^{2}$ gives $5 y+p \sqrt{y}+q=0$	(B1)		
	$p^{2} y=(-5 y-q)^{2}$	(B1)		OE with no square root
	$25 y^{2}-(10 q+400) y+q^{2}=0$	(B1)	(3)	ACF of quadratic eqn in terms of q and the variable only with relevant terms grouped
(ii)	$4\left(\frac{q}{5}+8\right)^{2}=4\left(\frac{q}{5}\right)^{2} \Rightarrow \frac{16 q}{5}+64=0$	M1		Use of $B^{2}-4 A C=0$ OE to obtain a linear eqn in q.
	$q=-20$	A1	2	$q=-20 \quad$ NMS $2 / 2$
(ii) Alt	$\begin{aligned} & (\alpha+4)^{2}=\alpha^{2} \Rightarrow \alpha=-2 \\ & q=5(-4)=-20 \end{aligned}$	(M1) (A1)	(2)	$\begin{aligned} & \alpha=-2 \\ & q=-20 \quad \text { NMS } 2 / 2 \end{aligned}$
	Total		9	
	(b)(ii) Both marks can be scored without (b)(i) being correct.			

Q3	Solution	Mark	Total	Comment
(a)	$z=\mathrm{i}(1-\mathrm{i})(2+\mathrm{i})=\mathrm{i}\left(2+\mathrm{i}-2 \mathrm{i}-\mathrm{i}^{2}\right)$		3	
	$=2 i-i^{2}-i^{3}$	M1		Attempt to expand all brackets
	$z=2 \mathrm{i}-(-1)-(-\mathrm{i})$	M1		$\mathrm{i}^{2}=-1$ used at least once at any stage in
	$z=1+3 \mathrm{i}$	A1		$1+3 \mathrm{i}$ obtained convincingly
				SC $11+3 \mathrm{i}$ NMS
(b)	$z-\mathrm{i}=1+2 \mathrm{i}$	B1F		c's $k+2 \mathrm{i}$. PI by next line
	$(z-\mathrm{i})^{*}=1-2 \mathrm{i}$	B1F		$c^{\prime} s k-2 i$
	$1-2 \mathrm{i}-m(1+3 \mathrm{i})=n(1+4 \mathrm{i})$			
	Re: $1-m=n$; Im: $-2-3 m=4 n$	M1		Attempting to equate, without mixing real and imaginary terms, both the Re parts and the Im parts to form two eqns each in m and n for the c's eqn (\#).
	$-2-3 m=4(1-m)$			A correct eqn in either m only or in n only PI by correct values for both m and n.
	$m=6, \quad n=-5$	A1	5	Both required, be convinced.
	Total		8	

Q4	Solution	Mark	Total	Comment
(a)	$\begin{aligned} \int \frac{1}{2 x \sqrt{x}} \mathrm{~d} x & =\int \frac{1}{2} x^{-1.5} \mathrm{~d} x \\ & =-x^{-0.5}(+ \text { constant }) \\ \int_{c}^{d} \frac{1}{2 x \sqrt{x}} \mathrm{~d} x & =-\frac{1}{\sqrt{d}}+\frac{1}{\sqrt{c}} \end{aligned}$	B1 B1 B1	3	$\frac{1}{x \sqrt{x}}=x^{-\frac{3}{2}}$ seen or used (ignore errors in dealing with the coefficient $1 / 2$) $-x^{-0.5} \mathrm{OE}$ Integration correct OE
(b) $\begin{aligned} \text { (i) } \\ \\ \text { (ii) }\end{aligned}$	$\frac{1}{\sqrt{c}} \rightarrow \infty$ as $c \rightarrow 0^{(+)}$so integral has no finite value $\frac{1}{\sqrt{d}} \rightarrow 0$ as $d \rightarrow \infty$ so $\int_{9}^{\infty} \frac{1}{2 x \sqrt{x}} \mathrm{~d} x=\frac{1}{3}$	E1 M1 A1	3	OE Ft on $k c^{-n}, n>0$ after integration OE Ft on $k d^{-n}, n>0$ after integration
	Total		6	
$\begin{aligned} & \text { (b)(i)(ii) } \\ & \text { (b)(i)(ii) } \end{aligned}$	Do NOT allow examples where $c=0$ eg $\frac{1}{\sqrt{0}} \rightarrow \infty$ or where $d=\infty$ eg $\frac{1}{\sqrt{\infty}} \rightarrow 0$ If $0 / 3 \mathrm{SC} 1$ if in (i) after integration cand has $k x^{-n}, n>0$ then eg ' $c \rightarrow 0$, so no finite value' or eg ' $c \rightarrow 0$, so 'undefined'			

Q6	Solution	Mark	Total	Comment
(a)	Vertical tangents: $x=4, x=-4$ Horizontal tangents: $y=2, \quad y=-2$ Area of rectangle $=8 \times 4=32$	M1 A1	2	Identification of the tangents either stated or shown on a diagram. PI by correct area. 32 NMS 2/2
(b)	$\left[\begin{array}{ll} 1 & 0 \\ 0 & 2 \end{array}\right]$	B2,1	2	B2 else B1 for $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right], k \neq 0, k \neq 1$
(c) (i)	Translation maps $(4,0)$ to $(7, *)$ and $(-4,0)$ to $(-1, *)$ $\Rightarrow a=3$	M1 A1	2	Either pair; or 'statement indicating move 3 to the right'. PI by correct value for a. Correct value for a.
(c) (ii)	$\begin{aligned} E_{2}: & \frac{(x-a)^{2}}{16}+\frac{(y-b)^{2}}{4}=1 \\ & 4(x-a)^{2}+16(y-b)^{2}=64 \end{aligned}$	M1		Eliminating denominators to get $4(x-a)^{2}+16(y-b)^{2}=64 \mathrm{OE}$ seen or used. PI by $p=-2 a$ and either $q=-8 b$ or $16-a^{2}-4 b^{2}=3$
	$\begin{aligned} & x^{2}+4 y^{2}-2 a x-8 b y=16-a^{2}-4 b^{2} \\ & \text { Compare with } x^{2}+4 y^{2}+p x+q y=3 \\ & \Rightarrow p=-2 a \quad \Rightarrow p=-6 \end{aligned}$	B1		Correct value for p. Accept either from comparing with $(x-3)^{2}$ or with $(x-a)^{2}$
	Comparing coefficients of y and constant terms: $q=-8 b ; \quad 16-a^{2}-4 b^{2}=3$ $\Rightarrow b^{2}=1 \Rightarrow b= \pm 1 \Rightarrow q= \pm 8$	M1 A1		OE Both attempted with at least one correct or $3+\frac{p^{2}}{4}+\frac{q^{2}}{16}=16 \mathrm{OE}$ Correct values for q.
	Total		10	
	(Translate E_{2} onto E_{1} using translation $\left[\begin{array}{l}-a \\ -b\end{array}\right]$): $(x+a)^{2}+4(y+b)^{2}+p(x+a)+q(y+b)=3$ seen or used (M1) PI by $p=-2 a$ and either $q=-8 b$ or $16-a^{2}-4 b^{2}=3$			

\begin{tabular}{|c|c|c|c|c|}
\hline Q8 \& Solution \& Mark \& Total \& Comment \\
\hline (a) \& \[
\mathbf{D}=\left[\begin{array}{cc}
1 \& 2.5 \\
3.5 \& -1
\end{array}\right]
\] \& B2,1 \& 2 \& \begin{tabular}{l}
If not \(\mathbf{B 2}\) award \(\mathbf{B 1}\) for either \\
(i) 3 elements correct or \\
(ii) \(2 \mathbf{D}=\left[\begin{array}{cc}2 \& 5 \\ 7 \& -2\end{array}\right]\) seen or \\
(iii) \(-2 \mathbf{D}=\left[\begin{array}{cc}-2 \& -5 \\ -7 \& 2\end{array}\right]\) seen or \\
(iv) \(\mathbf{D}=\left[\begin{array}{cc}1 \& 2 \\ 3 \& -1\end{array}\right]-\left[\begin{array}{cc}0 \& -0.5 \\ -0.5 \& 0\end{array}\right]\) seen
\end{tabular} \\
\hline (b) \& Reflection in the line \(y=-x\). \& E1 \& 1 \& OE eg \(y=x \tan 135^{(0)}\) \\
\hline \multirow[t]{2}{*}{(c)(i)

(ii)} \& $$
\cos \theta=-\frac{4}{5}
$$ \& B1 \& \& seen or used

\hline \& $$
\mathbf{B}=\left[\begin{array}{rr}
-\frac{4}{5} & -\frac{3}{5} \\
\frac{3}{5} & -\frac{4}{5}
\end{array}\right]
$$ \& B1F \& 2 \& Ft only on wrong sign for $\cos \theta$. Values must be exact

\hline \multirow[t]{4}{*}{(ii)} \& $$
\mathbf{B A}=\left[\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & -\frac{3}{5}
\end{array}\right] \text { or } \mathbf{A}\left[\begin{array}{l}
10 \\
15
\end{array}\right]=\left[\begin{array}{l}
-15 \\
-10
\end{array}\right]
$$ \& M1 \& \& Seen or used. Condone one arithmetical slip in evaluating the product of correct matrices.

\hline \& \[
$$
\begin{aligned}
& \mathbf{B A}\left[\begin{array}{l}
10 \\
15
\end{array}\right]=\left[\begin{array}{l}
18 \\
-1
\end{array}\right] \text { or } \mathbf{B}\left[\begin{array}{l}
-15 \\
-10
\end{array}\right]=\left[\begin{array}{c}
18 \\
-1
\end{array}\right] \\
& (P \text { has coordinates }) \quad(18,-1)
\end{aligned}
$$

\] \& | A1 |
| :--- |
| A1 | \& \& | At least one element of $\left[\begin{array}{c}18 \\ -1\end{array}\right]$ correct, and correctly obtained. $(18,-1)$ |
| :--- |
| SC If $0 / 3$ award 1 mark for either $\left[\begin{array}{c}-6 \\ -17\end{array}\right]$ or $\left[\begin{array}{c}6 \\ 17\end{array}\right]$ in matrix or coordinate form |

\hline \& \& \& 3 \&

\hline \& Total \& \& 8 \&

\hline \& \multicolumn{4}{|l|}{$\mathbf{S C}$ in (c)(ii) $(-6,-17)$ from wrong sign for $\cos \theta$ and (6,17) from using AB instead of BA.}

\hline
\end{tabular}

